Continuous functions

Six examples of showing a function is continuous.

1. Let

$$f(x) = \frac{x^2 - 2x - 15}{x + 3}, x \neq -3$$

How should f(-3) be defined so that f is continuous at -3?

Solution Recall the definition that f is continuous at a iff $\lim_{x\to a} f(x) = f(a)$. Since

$$\frac{x^2 - 2x - 15}{x + 3} = \frac{(x + 3)(x - 5)}{x + 3} = x - 5$$

for all $x \neq -3$, we have

$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x + 3} = \lim_{x \to -3} (x - 5) = -8.$$

Thus choose f(-3) = -8.

2. Prove, by verifying the ε - δ definition that h(x) = |x| is continuous at x = 0.

Deduce that h is continuous on \mathbb{R} .

(You need not verify the definition for $x \neq 0$, instead quote results from the lecture notes.)

Solution We first prove that *h* is continuous at 0 by verifying the $\varepsilon - \delta$ definition. Let $\varepsilon > 0$ be given, choose $\delta = \varepsilon$. and assume $|x - 0| < \delta$. Then

$$|h(x) - 0| = ||x| - 0| = |x| < \delta = \varepsilon$$

as required.

Note If you had not been asked to verify the ε - δ definition you could have examined the two one-sided limits

$$\lim_{x \to 0+} h(x) = \lim_{x \to 0+} |x| = \lim_{x \to 0+} x = 0,$$
$$\lim_{x \to 0-} h(x) = \lim_{x \to 0-} |x| = \lim_{x \to 0+} (-x) = 0.$$

Since both limits exist and are equal we can say $\lim_{x\to 0} h(x) = 0$. And since 0 = h(0) we have $\lim_{x\to 0} h(x) = h(0)$, which is the definition that h is continuous at x = 0. End of Note

To show that |x| is continuous on **all** of \mathbb{R} it remains to prove it is continuous at all $x \neq 0$. The question explicitly says that you are **not** required to verify the $\varepsilon - \delta$ definition for such x. Instead we quote results from the course.

If x > 0 then h(x) = |x| = x, a polynomial of x, so h(x) is continuous.

If x < 0 then h(x) = |x| = -x, a polynomial of x, so h(x) is again continuous.

Thus h is continuous for all $x \in \mathbb{R}$, i.e. it is continuous on \mathbb{R} .

- 3. Prove, by verifying the ε - δ definition that
 - i) the function $f(x) = x^2$ is continuous on \mathbb{R} ,

Hint Look back at Question 2 on Question Sheet 1 and replace a = 2 seen there by any $a \in \mathbb{R}$.

ii) the function $g(x) = \sqrt{x}$ is continuous on $(0, \infty)$.

Hint Look back at Question 11 on Question Sheet 1 and replace the a = 9 seen there by any a > 0.

iii) the function

$$h(x) = \begin{cases} x^2 + x & \text{for } x \le 1\\ \sqrt{x+3} & \text{for } x > 1, \end{cases}$$

is continuous at x = 1.

Hint Verify the ε - δ definitions of both one-sided limits separately at x = 1.

iv) the function

$$\frac{1}{x^2 + 1}$$

is continuous on \mathbb{R} .

Solution i) Rough Work. Let $a \in \mathbb{R}$ be given. Assume $|x - a| < \delta$ (remember, that when looking at continuity we do **not** have to exclude x = a). Consider

$$|f(x) - f(a)| = |x^2 - a^2| = |x - a| |x + a| < \delta |x + a|.$$

Recall the idea that if x is 'close' to a then |x + a| should be 'close' to 2|a|, in particular |x + a| will not be much larger than 2|a|. A way of implementing this idea is to assume |x - a| is small and use this to estimate |x + a| by rewriting this so we see x - a, i.e. as

$$|x + a| = |(x - a) + 2a|.$$

In detail, assume $\delta \leq 1$ in which case $|x - a| \leq 1$. Then

$$\begin{aligned} |x+a| &= |(x-a)+2a| \\ &\leq |x-a|+2|a| \quad \text{by triangle inequality} \\ &\leq 1+2|a|. \end{aligned}$$

(This is where we see that |x + a| is not be much larger than 2|a|.) Thus $|f(x) - f(a)| < \delta (1 + 2|a|)$ which we can ensure is $< \varepsilon$ if we demand $\delta \le \varepsilon/(1 + 2|a|)$.

End of Rough Work.

Note the most commonly seen **error** here is the following:

$$\begin{array}{rcl} 0 < |x-a| < \delta \leq 1 & \Longrightarrow & -1 < x-a < 1 \\ & \Longrightarrow & 2a-1 < x+a < 2a+1 \\ & \Longrightarrow & |x+a| < |2a+1| \,. \end{array}$$

Yet this is wrong. What would this be saying if a = -1/2? What is wrong with this sequence of implications? End of Note

Solution Let $a \in \mathbb{R}$ and $\varepsilon > 0$ be given. Choose

$$\delta = \min\left(1, \frac{\varepsilon}{1+2|a|}\right).$$

Assume $|x - 0| < \delta$. Then

$$\begin{aligned} |f(x) - f(a)| &= |x - a| |x + a| \\ &= |x - a| |(x - a) + 2a| \\ &\leq |x - a| (|x - a| + 2 |a|) \qquad \text{by triangle inequality,} \\ &< \delta (1 + 2 |a|) \qquad \text{since } |x - a| < \delta \le 1 \\ &< \left(\frac{\varepsilon}{1 + 2 |a|}\right) (1 + 2 |a|) \qquad \text{since } \delta \le \varepsilon/(1 + 2 |a|) \\ &= \varepsilon. \end{aligned}$$

Hence we have verified the ε - δ definition that f is continuous at a.

True for all $a \in \mathbb{R}$ means that f is continuous on \mathbb{R} .

ii) If you look back at Question 11 on Sheet 1 you see that to verify the $\varepsilon - \delta$ definition of $\lim_{x\to 9} \sqrt{x} = 3$ we required $\delta \leq 9$. When replacing 9 by any a > 0 we look at x satisfying $|x - a| < \delta$, i.e. $x \in (a - \delta, a + \delta)$. If $a - \delta < 0$ then the interval $(a - \delta, a + \delta)$ will contain negative x yet for \sqrt{x} to be defined we require $x \geq 0$. Hence we require $a - \delta \geq 0$, i.e. $\delta \leq a$.

Let a > 0 and $\varepsilon > 0$ be given. Choose $\delta = \min(a, \varepsilon \sqrt{a})$. Assume $0 < |x - a| < \delta$.

Then $-\delta < x-a < \delta$. Since $\delta \leq a$ the lower bound becomes -a < x-a, i.e. x > 0 and thus $g(x) = \sqrt{x}$ is well-defined.

We start with a "trick" seen in Sheet 1, based on the difference of squares,

$$\begin{aligned} |g(x) - g(a)| &= \left| \sqrt{x} - \sqrt{a} \right| &= \left| \left(\sqrt{x} - \sqrt{a} \right) \frac{\left(\sqrt{x} + \sqrt{a} \right)}{\left(\sqrt{x} + \sqrt{a} \right)} \right| \\ &= \frac{|x - a|}{\sqrt{x} + \sqrt{a}} < \frac{|x - a|}{\sqrt{a}} \qquad \text{having used } \sqrt{x} > 0, \\ &< \frac{\delta}{\sqrt{a}} \le \frac{\varepsilon \sqrt{a}}{\sqrt{a}} \qquad \text{since } \delta \le \varepsilon \sqrt{a}, \\ &= \varepsilon. \end{aligned}$$

Hence we have verified the ε - δ definition of

$$\lim_{x \to a} g(x) = g(a)$$

i.e. that g is continuous at a.

True for all a > 0 means that g is continuous on $(0, \infty)$.

Note A not uncommon error was to misinterpret the hint and start with

$$\left|\sqrt{x} - \sqrt{a}\right| = \left|x^{1/4} - x^{1/4}\right| \left|x^{1/4} + x^{1/4}\right|.$$

Unfortunately this makes everything more complicated rather than simpler. **End of Note**

iii) Because f is given by different formula for x > 1 and x < 1 we need to examine the two one-sided limits and show that

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1) = 2.$$

Let $\varepsilon > 0$ be given.

For the limit from below, i.e. as $x \to 1-$. Choose $\delta = \min(1, \varepsilon/3)$. Assume $1 - \delta < x < 1$.

Then $\delta \leq 1$ implies 0 < x < 1 and thus |x + 2| < 3. Therefore

$$|f(x) - 2| = |x^2 + x - 2| = |(x + 2) (x - 1)|$$

$$\leq 3|x - 1| \leq 3\delta \leq 3\left(\frac{\varepsilon}{3}\right) = \varepsilon.$$

Thus we have verified the $\varepsilon \operatorname{-} \delta$ definition of the one-sided limit

$$\lim_{x \to 1-} f(x) = 2.$$

For the limit from above, i.e. as $x \to 1+$. Choose $\delta = \varepsilon$. Assume $1 < x < 1 + \delta$, which will be used below as $x - 1 < \delta$.

Then using a "trick" seen in the solution to the previous question,

$$|f(x) - 2| = \sqrt{x+3} - 2 = \left(\sqrt{x+3} - 2\right) \times \frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2}$$
$$= \frac{(x+3) - 4}{\sqrt{x+3} + 2} = \frac{x-1}{\sqrt{x+3} + 2}$$
$$\leq x - 1, \tag{1}$$

using $\sqrt{x+3} + 2 \ge 1$ (and x - 1 positive). Hence

$$|f(x) - 2| \le x - 1 < \delta = \varepsilon.$$

Thus we have verified the ε - δ definition of the one-sided limit

$$\lim_{x \to 1+} f(x) = 2.$$

Note It would be reasonable, since x > 1, to say $\sqrt{x+3} + 2 > 4$ and thus

$$\frac{x-1}{\sqrt{x+3}+2} < \frac{x-1}{4} < \frac{\delta}{4}.$$

You would then choose $\delta = 4\varepsilon$. End of Note

iv) Let $a \in \mathbb{R}$ be given.

Rough Work.

Consider

$$\frac{1}{1+x^2} - \frac{1}{1+a^2} \bigg| = \bigg| \frac{a^2 - x^2}{(1+x^2)(1+a^2)} \bigg| \le |x^2 - a^2|,$$

having used $1 + x^2 \ge 1$, $1 + a^2 \ge 1$ and $|a^2 - x^2| = |x^2 - a^2|$. But now we are back in part (i) where we are trying to show that $|x^2 - a^2| < \varepsilon$. Thus choose δ as we did there.

End of Rough work

Solution Let $a \in \mathbb{R}$ and $\varepsilon > 0$ be given. Choose

$$\delta = \min\left(1, \frac{\varepsilon}{1+2|a|}\right).$$

Assume $0 < |x - a| < \delta$. Then, starting as in the rough work,

$$\begin{aligned} \left| \frac{1}{1+x^2} - \frac{1}{1+a^2} \right| &\leq |x^2 - a^2| = |x-a| |x+a| \\ &= |x-a| |(x-a) + 2a| \\ &\leq |x-a| (|x-a| + 2|a|) \qquad \text{by triangle inequality} \\ &< |x-a| (1+2|a|) \qquad \text{since } |x-a| < \delta \leq 1 \\ &< \left(\frac{\varepsilon}{1+2|a|} \right) (1+2|a|) \\ &\qquad \text{since } |x-a| < \delta \leq \varepsilon/(1+2|a|) \\ &= \varepsilon. \end{aligned}$$

Hence we have verified the ε - δ definition that $1/(1 + x^2)$ is continuous at a.

True for all $a \in \mathbb{R}$ means that $1/(1 + x^2)$ is continuous on \mathbb{R} .

4. Are the following functions continuous on the domains given or not?

Either prove that they are continuous by using the appropriate Continuity Rules, or show they are not.

i)
$$f(x) = \frac{x+2}{x^2+1} \text{ on } \mathbb{R}.$$
ii)
$$g(x) = \frac{3+2x}{x^2+1}$$

 $g(x) = \frac{3+2x}{x^2 - 1},$

firstly on [-1/2, 1/2], secondly on [-2, 2].

iii)

$$h(x) = \frac{x^2 + x - 2}{(x^2 + 1)(x - 1)}$$
 on \mathbb{R} .

iv)

$$j(x) = \begin{cases} x+2 & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x \le 1 \\ x-2 & \text{if } x > 1. \end{cases}$$

v)

$$k(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0. \end{cases}$$

vi)

$$\ell(x) = \begin{cases} \frac{1 - \cos x}{x^2} & x \neq 0\\ 1 & x = 0. \end{cases}$$

Solution i) The given function f is a quotient of polynomials, i.e. a rational function. The polynomials are continuous everywhere. Hence f is continuous wherever it is defined. The denominator, $x^2 + 1$, is never zero for $x \in \mathbb{R}$, so f is defined everywhere. Hence f is continuous everywhere.

ii) The argument is as in part i). But now the denominator is $x^2 - 1$ which is zero at $x = \pm 1$. So

• g is well-defined throughout [-1/2, 1/2] and so g is continuous on [-1/2, 1/2], but

• g is not defined everywhere in [-2, 2] and, in fact, g is continuous on [-2, 2] except at -1 and 1.

iii) As written, h is defined everywhere except at x = 1. So h is continuous on $\mathbb{R} \setminus \{1\}$.

Note When x = 1 the numerator is also 0. In fact $x^2 + x - 2 = (x+2)(x-1)$ and thus

$$h(x) = \frac{(x+2)(x-1)}{(x^2+1)(x-1)} = \frac{x+2}{x^2+1}.$$

In this way we could *extend* the definition of h to all of \mathbb{R} but we would then have a *different* function.

iv) j(x) is continuous on \mathbb{R} except possibly at x = -1 and x = 1.

At x = -1 the two one-sided limits are

$$\lim_{x \to -1^{-}} j(x) = \lim_{x \to -1^{-}} (x+2) = 1,$$
$$\lim_{x \to -1^{+}} j(x) = \lim_{x \to -1^{+}} x^{2} = 1.$$

Since the two one-sided limits exist and are equal we deduce that $\lim_{x\to -1} j(x) = 1$. Yet 1 = j(-1) so $\lim_{x\to -1} j(x) = j(-1)$ which is the definition that j is continuous at x = -1.

At x = 1 the two one-sided limits are

$$\lim_{x \to 1^{-}} j(x) = \lim_{x \to 1^{-}} x^{2} = 1,$$
$$\lim_{x \to 1^{+}} j(x) = \lim_{x \to 1^{+}} (x - 2) = -1.$$

Different one-sided limits means that $\lim_{x\to 1} j(x)$ does **not** exist and so cannot equal j(1). Thus j is **not** continuous at x = 1.

v) If $x \neq 0$ then $k(x) = (\sin x)/x$. We have shown that $\sin x$ is continuous, as is x, for $x \neq 0$. Hence k(x) is continuous for $x \neq 0$ by the Quotient Rule.

If x = 0 we have

$$\lim_{x \to 0} k(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1,$$

a result seen in the lectures. By definition, k(0) = 1, thus $\lim_{x\to 0} k(x) = k(0)$ and so k is continuous at x = 0.

Hence k is continuous on \mathbb{R} .

vi) If $x \neq 0$ then $\ell(x) = (1 - \cos x) / x^2$. We have shown that $\cos x$ is continuous, as is x^2 , for $x \neq 0$. Hence $\ell(x)$ is continuous for $x \neq 0$ by the Quotient Rule.

If x = 0 we have

$$\lim_{x \to 0} \ell(x) = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2},$$

a result seen in the lectures. By definition, $\ell(0) = 1$, thus $\lim_{x\to 0} \ell(x) \neq \ell(0)$ and so ℓ is **not** continuous at x = 0.

Hence ℓ is not continuous on \mathbb{R} .

- 5. i) Prove, by verifying the definition, that $\cos x$ is continuous on \mathbb{R} . **Hint** Make use of $\cos (x + y) = \cos x \cos y - \sin x \sin y$, valid for all $x, y \in \mathbb{R}$.
 - ii) Prove that $\tan x$ is continuous for all $x \neq \pi/2 + k\pi, k \in \mathbb{Z}$.

Solution i) Let $a \in \mathbb{R}$ be given. We know that $\cos x$ is continuous at a if, and only if, $\cos(x+a)$ is continuous at x = 0. Thus we need examine

$$\lim_{x \to 0} \cos (x + a) = \lim_{x \to 0} (\cos x \cos a - \sin x \sin a)$$

by the assumption in the question,

$$= \left(\lim_{x \to 0} \cos x\right) \cos a - \left(\lim_{x \to 0} \sin x\right) \sin a$$

by the Product and Sum Rules for limits,

$$= 1 \times \cos a - 0 \times \sin a$$
$$= \cos a = \cos (0 + a).$$

Thus $\cos(x+a)$ is continuous at x = 0 and hence $\cos x$ is continuous at a. True for all $a \in \mathbb{R}$ means \cos is continuous on \mathbb{R} .

ii) Let $a \neq \pi/2 + k\pi$ for any $k \in \mathbb{Z}$ be given. Then

$$\lim_{x \to a} \tan x = \lim_{x \to a} \frac{\sin x}{\cos x} = \frac{\lim_{x \to a} \sin x}{\lim_{x \to a} \cos x}$$

by the Limit Law for Quotients. This is allowable since both limits exist (because sin and cos are everywhere continuous) and further $\lim_{x\to a} \cos x = \cos a \neq 0$ since $a \neq \pi/2 + k\pi$ for any $k \in \mathbb{Z}$. Thus

$$\lim_{x \to a} \tan x = \frac{\lim_{x \to a} \sin x}{\lim_{x \to a} \cos x} = \frac{\sin a}{\cos a} = \tan a.$$

Since the *limit* of tan at *a* equals the *value* of tan at *a* we have verified the definition that tan is continuous at *a*. Yet *a* was arbitrary subject to being not of the form $\pi/2 + k\pi$ for any $k \in \mathbb{Z}$, therefore tan is continuous for all $x \neq \pi/2 + k\pi$ for any $k \in \mathbb{Z}$.

6. Show that the hyperbolic functions $\sinh x$, $\cosh x$ and $\tanh x$ are continuous on \mathbb{R} .

Solution Recall that

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \text{and} \quad \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

We know that e^x is continuous on \mathbb{R} as is thus e^{-x} , either by the Quotient Rule since $e^{-x} = 1/e^x$ and $e^x \neq 0$ or by the Composition Rule $x \mapsto -x \mapsto e^{-x}$. Thus $\sinh x$ and $\cosh x$ are continuous on \mathbb{R} by the Sum Rule.

For $\tanh x$ we use the Quotient Rule observing that $e^x + e^{-x}$ is never zero.

Composite Rule

7. i) State the Composite Rule for functions.

Evaluate

$$\lim_{x \to 0} \exp\left(\frac{\sin x}{x}\right).$$

ii) State the Composite Rule for continuous functions.

Prove that

$$\left|\frac{x+2}{x^2+1}\right|$$

is continuous on \mathbb{R} .

Solution Composite Rule for functions. Assume that g is defined on a deleted neighbourhood of $a \in \mathbb{R}$ and $\lim_{x\to a} g(x) = L$ exists. Assume that f is defined on a neighbourhood of L and is continuous there. Then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$
(2)

i) Let

$$g(x) = \frac{\sin x}{x}$$
 and $f(x) = \exp(x) = e^x$.

Then g is defined on $\mathbb{R} \setminus \{0\}$ and $\lim_{x\to 0} g(x)$ exists, with value 1. Further f is defined on **all** of \mathbb{R} and is continuous at $1 = \lim_{x\to 0} g(x)$. Thus we can apply the Composite Rule for functions to say

$$\lim_{x \to 0} \exp\left(\frac{\sin x}{x}\right) = \lim_{x \to 0} f(g(x)) = f\left(\lim_{x \to 0} g(x)\right)$$
$$= \exp\left(\lim_{x \to 0} \frac{\sin x}{x}\right) = \exp\left(1\right)$$
$$= e.$$

ii) Composite Rule for Continuous functions. Assume that g is defined on a neighbourhood of $a \in \mathbb{R}$ and is continuous there and assume that f is defined on a neighbourhood of g(a) and is continuous there, then $f \circ g$ is continuous at a.

Let

$$g(x) = \frac{x+2}{x^2+1}$$
 and $f(x) = |x|$.

We have seen in Questions 4i and 2 on that both g and f are continuous on all of \mathbb{R} . Hence by the Composite Rule for continuous functions we deduce that

$$f(g(x)) = \left|\frac{x+2}{x^2+1}\right|$$

is continuous at every $a \in \mathbb{R}$, i.e. is continuous on \mathbb{R} .