Solutions to Question Sheet 4, Continuity I

Continuous functions

Six examples of showing a function is continuous.

1. Let

$$
f(x)=\frac{x^{2}-2 x-15}{x+3}, x \neq-3 .
$$

How should $f(-3)$ be defined so that f is continuous at -3 ?
Solution Recall the definition that f is continuous at a iff $\lim _{x \rightarrow a} f(x)=$ $f(a)$. Since

$$
\frac{x^{2}-2 x-15}{x+3}=\frac{(x+3)(x-5)}{x+3}=x-5
$$

for all $x \neq-3$, we have

$$
\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x+3}=\lim _{x \rightarrow-3}(x-5)=-8
$$

Thus choose $f(-3)=-8$.
2. Prove, by verifying the $\varepsilon-\delta$ definition that $h(x)=|x|$ is continuous at $x=0$.

Deduce that h is continuous on \mathbb{R}.
(You need not verify the definition for $x \neq 0$, instead quote results from the lecture notes.)

Solution We first prove that h is continuous at 0 by verifying the $\varepsilon-\delta$ definition. Let $\varepsilon>0$ be given, choose $\delta=\varepsilon$. and assume $|x-0|<\delta$. Then

$$
|h(x)-0|=||x|-0|=|x|<\delta=\varepsilon
$$

as required.

Note If you had not been asked to verify the $\varepsilon-\delta$ definition you could have examined the two one-sided limits

$$
\begin{aligned}
\lim _{x \rightarrow 0+} h(x) & =\lim _{x \rightarrow 0+}|x|=\lim _{x \rightarrow 0+} x=0 \\
\lim _{x \rightarrow 0-} h(x) & =\lim _{x \rightarrow 0-}|x|=\lim _{x \rightarrow 0+}(-x)=0 .
\end{aligned}
$$

Since both limits exist and are equal we can say $\lim _{x \rightarrow 0} h(x)=0$. And since $0=h(0)$ we have $\lim _{x \rightarrow 0} h(x)=h(0)$, which is the definition that h is continuous at $x=0$. End of Note

To show that $|x|$ is continuous on all of \mathbb{R} it remains to prove it is continuous at all $x \neq 0$. The question explicitly says that you are not required to verify the $\varepsilon-\delta$ definition for such x. Instead we quote results from the course.

If $x>0$ then $h(x)=|x|=x$, a polynomial of x, so $h(x)$ is continuous.
If $x<0$ then $h(x)=|x|=-x$, a polynomial of x, so $h(x)$ is again continuous.

Thus h is continuous for all $x \in \mathbb{R}$, i.e. it is continuous on \mathbb{R}.
3. Prove, by verifying the $\varepsilon-\delta$ definition that
i) the function $f(x)=x^{2}$ is continuous on \mathbb{R},

Hint Look back at Question 2 on Question Sheet 1 and replace $a=2$ seen there by any $a \in \mathbb{R}$.
ii) the function $g(x)=\sqrt{x}$ is continuous on $(0, \infty)$.

Hint Look back at Question 11 on Question Sheet 1 and replace the $a=9$ seen there by any $a>0$.
iii) the function

$$
h(x)= \begin{cases}x^{2}+x & \text { for } x \leq 1 \\ \sqrt{x+3} & \text { for } x>1\end{cases}
$$

is continuous at $x=1$.
Hint Verify the $\varepsilon-\delta$ definitions of both one-sided limits separately at $x=1$.
iv) the function

$$
\frac{1}{x^{2}+1}
$$

is continuous on \mathbb{R}.
Solution i) Rough Work. Let $a \in \mathbb{R}$ be given. Assume $|x-a|<\delta$ (remember, that when looking at continuity we do not have to exclude $x=a$). Consider

$$
|f(x)-f(a)|=\left|x^{2}-a^{2}\right|=|x-a||x+a|<\delta|x+a| .
$$

Recall the idea that if x is 'close' to a then $|x+a|$ should be 'close' to $2|a|$, in particular $|x+a|$ will not be much larger than $2|a|$. A way of implementing this idea is to assume $|x-a|$ is small and use this to estimate $|x+a|$ by rewriting this so we see $x-a$, i.e. as

$$
|x+a|=|(x-a)+2 a| .
$$

In detail, assume $\delta \leq 1$ in which case $|x-a| \leq 1$. Then

$$
\begin{aligned}
|x+a| & =|(x-a)+2 a| \\
& \leq|x-a|+2|a| \quad \text { by triangle inequality } \\
& \leq 1+2|a|
\end{aligned}
$$

(This is where we see that $|x+a|$ is not be much larger than $2|a|$.) Thus $|f(x)-f(a)|<\delta(1+2|a|)$ which we can ensure is $<\varepsilon$ if we demand $\delta \leq \varepsilon /(1+2|a|)$.

End of Rough Work.
Note the most commonly seen error here is the following:

$$
\begin{aligned}
0<|x-a|<\delta \leq 1 & \Longrightarrow-1<x-a<1 \\
& \Longrightarrow 2 a-1<x+a<2 a+1 \\
& \Longrightarrow|x+a|<|2 a+1| .
\end{aligned}
$$

Yet this is wrong. What would this be saying if $a=-1 / 2$? What is wrong with this sequence of implications? End of Note

Solution Let $a \in \mathbb{R}$ and $\varepsilon>0$ be given. Choose

$$
\delta=\min \left(1, \frac{\varepsilon}{1+2|a|}\right) .
$$

Assume $|x-0|<\delta$. Then

$$
\begin{array}{rlr}
|f(x)-f(a)| & =|x-a||x+a| \\
& =|x-a||(x-a)+2 a| & \\
& \leq|x-a|(|x-a|+2|a|) \quad \text { by triangle inequality, } \\
& <\delta(1+2|a|) \quad \text { since }|x-a|<\delta \leq 1 \\
& <\left(\frac{\varepsilon}{1+2|a|}\right)(1+2|a|) \quad & \text { since } \delta \leq \varepsilon /(1+2|a|) \\
& =\varepsilon &
\end{array}
$$

Hence we have verified the $\varepsilon-\delta$ definition that f is continuous at a.
True for all $a \in \mathbb{R}$ means that f is continuous on \mathbb{R}.
ii) If you look back at Question 11 on Sheet 1 you see that to verify the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow 9} \sqrt{x}=3$ we required $\delta \leq 9$. When replacing 9 by any $a>0$ we look at x satisfying $|x-a|<\delta$, i.e. $x \in(a-\delta, a+\delta)$. If $a-\delta<0$ then the interval $(a-\delta, a+\delta)$ will contain negative x yet for \sqrt{x} to be defined we require $x \geq 0$. Hence we require $a-\delta \geq 0$, i.e. $\delta \leq a$.

Let $a>0$ and $\varepsilon>0$ be given. Choose $\delta=\min (a, \varepsilon \sqrt{a})$. Assume $0<|x-a|<\delta$.

Then $-\delta<x-a<\delta$. Since $\delta \leq a$ the lower bound becomes $-a<x-a$, i.e. $x>0$ and thus $g(x)=\sqrt{x}$ is well-defined.

We start with a "trick" seen in Sheet 1, based on the difference of squares,

$$
\begin{aligned}
|g(x)-g(a)| & =|\sqrt{x}-\sqrt{a}|=\left|(\sqrt{x}-\sqrt{a}) \frac{(\sqrt{x}+\sqrt{a})}{(\sqrt{x}+\sqrt{a})}\right| \\
& =\frac{|x-a|}{\sqrt{x}+\sqrt{a}}<\frac{|x-a|}{\sqrt{a}} \quad \text { having used } \sqrt{x}>0 \\
& <\frac{\delta}{\sqrt{a}} \leq \frac{\varepsilon \sqrt{a}}{\sqrt{a}} \quad \text { since } \delta \leq \varepsilon \sqrt{a} \\
& =\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow a} g(x)=g(a),
$$

i.e. that g is continuous at a.

True for all $a>0$ means that g is continuous on $(0, \infty)$.
Note A not uncommon error was to misinterpret the hint and start with

$$
|\sqrt{x}-\sqrt{a}|=\left|x^{1 / 4}-x^{1 / 4}\right|\left|x^{1 / 4}+x^{1 / 4}\right| .
$$

Unfortunately this makes everything more complicated rather than simpler. End of Note
iii) Because f is given by different formula for $x>1$ and $x<1$ we need to examine the two one-sided limits and show that

$$
\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1+} f(x)=f(1)=2
$$

Let $\varepsilon>0$ be given.
For the limit from below, i.e. as $x \rightarrow 1-$. Choose $\delta=\min (1, \varepsilon / 3)$. Assume $1-\delta<x<1$.

Then $\delta \leq 1$ implies $0<x<1$ and thus $|x+2|<3$. Therefore

$$
\begin{aligned}
|f(x)-2| & =\left|x^{2}+x-2\right|=|(x+2)(x-1)| \\
& \leq 3|x-1| \leq 3 \delta \leq 3\left(\frac{\varepsilon}{3}\right)=\varepsilon
\end{aligned}
$$

Thus we have verified the $\varepsilon-\delta$ definition of the one-sided limit

$$
\lim _{x \rightarrow 1-} f(x)=2 .
$$

For the limit from above, i.e. as $x \rightarrow 1+$. Choose $\delta=\varepsilon$. Assume $1<x<1+\delta$, which will be used below as $x-1<\delta$.

Then using a "trick" seen in the solution to the previous question,

$$
\begin{align*}
|f(x)-2| & =\sqrt{x+3}-2=(\sqrt{x+3}-2) \times \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2} \\
& =\frac{(x+3)-4}{\sqrt{x+3}+2}=\frac{x-1}{\sqrt{x+3}+2} \\
& \leq x-1 \tag{1}
\end{align*}
$$

using $\sqrt{x+3}+2 \geq 1$ (and $x-1$ positive). Hence

$$
|f(x)-2| \leq x-1<\delta=\varepsilon .
$$

Thus we have verified the $\varepsilon-\delta$ definition of the one-sided limit

$$
\lim _{x \rightarrow 1+} f(x)=2 .
$$

Note It would be reasonable, since $x>1$, to say $\sqrt{x+3}+2>4$ and thus

$$
\frac{x-1}{\sqrt{x+3}+2}<\frac{x-1}{4}<\frac{\delta}{4} .
$$

You would then choose $\delta=4 \varepsilon$. End of Note
iv) Let $a \in \mathbb{R}$ be given.

Rough Work.

Consider

$$
\left|\frac{1}{1+x^{2}}-\frac{1}{1+a^{2}}\right|=\left|\frac{a^{2}-x^{2}}{\left(1+x^{2}\right)\left(1+a^{2}\right)}\right| \leq\left|x^{2}-a^{2}\right|
$$

having used $1+x^{2} \geq 1,1+a^{2} \geq 1$ and $\left|a^{2}-x^{2}\right|=\left|x^{2}-a^{2}\right|$. But now we are back in part (i) where we are trying to show that $\left|x^{2}-a^{2}\right|<\varepsilon$. Thus choose δ as we did there.

End of Rough work

Solution Let $a \in \mathbb{R}$ and $\varepsilon>0$ be given. Choose

$$
\delta=\min \left(1, \frac{\varepsilon}{1+2|a|}\right) .
$$

Assume $0<|x-a|<\delta$. Then, starting as in the rough work,

$$
\begin{aligned}
\left|\frac{1}{1+x^{2}}-\frac{1}{1+a^{2}}\right| & \leq\left|x^{2}-a^{2}\right|=|x-a||x+a| \\
& =|x-a||(x-a)+2 a| \\
& \leq|x-a|(|x-a|+2|a|) \quad \text { by triangle inequality, } \\
& <|x-a|(1+2|a|) \quad \text { since }|x-a|<\delta \leq 1 \\
& <\left(\frac{\varepsilon}{1+2|a|}\right)(1+2|a|) \\
& \quad \text { since }|x-a|<\delta \leq \varepsilon /(1+2|a|) \\
& =\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-\delta$ definition that $1 /\left(1+x^{2}\right)$ is continuous at a.

True for all $a \in \mathbb{R}$ means that $1 /\left(1+x^{2}\right)$ is continuous on \mathbb{R}.
4. Are the following functions continuous on the domains given or not?

Either prove that they are continuous by using the appropriate Continuity Rules, or show they are not.
i)

$$
f(x)=\frac{x+2}{x^{2}+1} \text { on } \mathbb{R} .
$$

ii)

$$
g(x)=\frac{3+2 x}{x^{2}-1},
$$

firstly on $[-1 / 2,1 / 2]$, secondly on $[-2,2]$.
iii)

$$
h(x)=\frac{x^{2}+x-2}{\left(x^{2}+1\right)(x-1)} \text { on } \mathbb{R} .
$$

iv)

$$
j(x)=\left\{\begin{array}{cl}
x+2 & \text { if } x<-1 \\
x^{2} & \text { if }-1 \leq x \leq 1 . \\
x-2 & \text { if } x>1 .
\end{array}\right.
$$

v)

$$
k(x)=\left\{\begin{array}{ll}
\frac{\sin x}{x} & x \neq 0 \\
1 & x=0 .
\end{array} .\right.
$$

vi)

$$
\ell(x)=\left\{\begin{array}{ll}
\frac{1-\cos x}{x^{2}} & x \neq 0 \\
1 & x=0
\end{array} .\right.
$$

Solution i) The given function f is a quotient of polynomials, i.e. a rational function. The polynomials are continuous everywhere. Hence f is continuous wherever it is defined. The denominator, $x^{2}+1$, is never zero for $x \in \mathbb{R}$, so f is defined everywhere. Hence f is continuous everywhere.
ii) The argument is as in part i). But now the denominator is $x^{2}-1$ which is zero at $x= \pm 1$. So

- g is well-defined throughout $[-1 / 2,1 / 2]$ and so g is continuous on [$-1 / 2,1 / 2]$, but
- g is not defined everywhere in $[-2,2]$ and, in fact, g is continuous on $[-2,2]$ except at -1 and 1 .
iii) As written, h is defined everywhere except at $x=1$. So h is continuous on $\mathbb{R} \backslash\{1\}$.

Note When $x=1$ the numerator is also 0 . In fact $x^{2}+x-2=$ $(x+2)(x-1)$ and thus

$$
h(x)=\frac{(x+2)(x-1)}{\left(x^{2}+1\right)(x-1)}=\frac{x+2}{x^{2}+1} .
$$

In this way we could extend the definition of h to all of \mathbb{R} but we would then have a different function.
iv) $j(x)$ is continuous on \mathbb{R} except possibly at $x=-1$ and $x=1$.

At $x=-1$ the two one-sided limits are

$$
\begin{aligned}
\lim _{x \rightarrow-1-} j(x) & =\lim _{x \rightarrow-1-}(x+2)=1, \\
\lim _{x \rightarrow-1+} j(x) & =\lim _{x \rightarrow-1+} x^{2}=1 .
\end{aligned}
$$

Since the two one-sided limits exist and are equal we deduce that $\lim _{x \rightarrow-1} j(x)=1$. Yet $1=j(-1)$ so $\lim _{x \rightarrow-1} j(x)=j(-1)$ which is the definition that j is continuous at $x=-1$.

At $x=1$ the two one-sided limits are

$$
\begin{aligned}
\lim _{x \rightarrow 1-} j(x) & =\lim _{x \rightarrow 1-} x^{2}=1 \\
\lim _{x \rightarrow 1+} j(x) & =\lim _{x \rightarrow 1+}(x-2)=-1
\end{aligned}
$$

Different one-sided limits means that $\lim _{x \rightarrow 1} j(x)$ does not exist and so cannot equal $j(1)$. Thus j is not continuous at $x=1$.
v) If $x \neq 0$ then $k(x)=(\sin x) / x$. We have shown that $\sin x$ is continuous, as is x, for $x \neq 0$. Hence $k(x)$ is continuous for $x \neq 0$ by the Quotient Rule.

If $x=0$ we have

$$
\lim _{x \rightarrow 0} k(x)=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1,
$$

a result seen in the lectures. By definition, $k(0)=1$, thus $\lim _{x \rightarrow 0} k(x)=$ $k(0)$ and so k is continuous at $x=0$.

Hence k is continuous on \mathbb{R}.
vi) If $x \neq 0$ then $\ell(x)=(1-\cos x) / x^{2}$. We have shown that $\cos x$ is continuous, as is x^{2}, for $x \neq 0$. Hence $\ell(x)$ is continuous for $x \neq 0$ by the Quotient Rule.

If $x=0$ we have

$$
\lim _{x \rightarrow 0} \ell(x)=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2}
$$

a result seen in the lectures. By definition, $\ell(0)=1$, thus $\lim _{x \rightarrow 0} \ell(x) \neq$ $\ell(0)$ and so ℓ is not continuous at $x=0$.

Hence ℓ is not continuous on \mathbb{R}.
5. i) Prove, by verifying the definition, that $\cos x$ is continuous on \mathbb{R}.

Hint Make use of $\cos (x+y)=\cos x \cos y-\sin x \sin y$, valid for all $x, y \in \mathbb{R}$.
ii) Prove that $\tan x$ is continuous for all $x \neq \pi / 2+k \pi, k \in \mathbb{Z}$.

Solution i) Let $a \in \mathbb{R}$ be given. We know that $\cos x$ is continuous at a if, and only if, $\cos (x+a)$ is continuous at $x=0$. Thus we need examine

$$
\begin{aligned}
\lim _{x \rightarrow 0} \cos (x+a)= & \lim _{x \rightarrow 0}(\cos x \cos a-\sin x \sin a) \\
& \quad \text { by the assumption in the question, } \\
= & \left(\lim _{x \rightarrow 0} \cos x\right) \cos a-\left(\lim _{x \rightarrow 0} \sin x\right) \sin a \\
& \quad \text { by the Product and Sum Rules for limits, } \\
= & 1 \times \cos a-0 \times \sin a \\
= & \cos a=\cos (0+a) .
\end{aligned}
$$

Thus $\cos (x+a)$ is continuous at $x=0$ and hence $\cos x$ is continuous at a. True for all $a \in \mathbb{R}$ means cos is continuous on \mathbb{R}.
ii) Let $a \neq \pi / 2+k \pi$ for any $k \in \mathbb{Z}$ be given. Then

$$
\lim _{x \rightarrow a} \tan x=\lim _{x \rightarrow a} \frac{\sin x}{\cos x}=\frac{\lim _{x \rightarrow a} \sin x}{\lim _{x \rightarrow a} \cos x}
$$

by the Limit Law for Quotients. This is allowable since both limits exist (because sin and cos are everywhere continuous) and further $\lim _{x \rightarrow a} \cos x=\cos a \neq 0$ since $a \neq \pi / 2+k \pi$ for any $k \in \mathbb{Z}$. Thus

$$
\lim _{x \rightarrow a} \tan x=\frac{\lim _{x \rightarrow a} \sin x}{\lim _{x \rightarrow a} \cos x}=\frac{\sin a}{\cos a}=\tan a .
$$

Since the limit of \tan at a equals the value of \tan at a we have verified the definition that \tan is continuous at a. Yet a was arbitrary subject to being not of the form $\pi / 2+k \pi$ for any $k \in \mathbb{Z}$, therefore \tan is continuous for all $x \neq \pi / 2+k \pi$ for any $k \in \mathbb{Z}$.
6. Show that the hyperbolic functions $\sinh x, \cosh x$ and $\tanh x$ are continuous on \mathbb{R}.

Solution Recall that

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

We know that e^{x} is continuous on \mathbb{R} as is thus e^{-x}, either by the Quotient Rule since $e^{-x}=1 / e^{x}$ and $e^{x} \neq 0$ or by the Composition Rule $x \mapsto-x \mapsto e^{-x}$. Thus $\sinh x$ and $\cosh x$ are continuous on \mathbb{R} by the Sum Rule.

For $\tanh x$ we use the Quotient Rule observing that $e^{x}+e^{-x}$ is never zero.

Composite Rule

7. i) State the Composite Rule for functions.

Evaluate

$$
\lim _{x \rightarrow 0} \exp \left(\frac{\sin x}{x}\right) .
$$

ii) State the Composite Rule for continuous functions.

Prove that

$$
\left|\frac{x+2}{x^{2}+1}\right|
$$

is continuous on \mathbb{R}.

Solution Composite Rule for functions. Assume that g is defined on a deleted neighbourhood of $a \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=L$ exists. Assume that f is defined on a neighbourhood of L and is continuous there. Then

$$
\begin{equation*}
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right) . \tag{2}
\end{equation*}
$$

i) Let

$$
g(x)=\frac{\sin x}{x} \quad \text { and } \quad f(x)=\exp (x)=e^{x} .
$$

Then g is defined on $\mathbb{R} \backslash\{0\}$ and $\lim _{x \rightarrow 0} g(x)$ exists, with value 1 . Further f is defined on all of \mathbb{R} and is continuous at $1=\lim _{x \rightarrow 0} g(x)$. Thus we can apply the Composite Rule for functions to say

$$
\begin{aligned}
\lim _{x \rightarrow 0} \exp \left(\frac{\sin x}{x}\right) & =\lim _{x \rightarrow 0} f(g(x))=f\left(\lim _{x \rightarrow 0} g(x)\right) \\
& =\exp \left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)=\exp (1) \\
& =e .
\end{aligned}
$$

ii) Composite Rule for Continuous functions. Assume that g is defined on a neighbourhood of $a \in \mathbb{R}$ and is continuous there and assume that f is defined on a neighbourhood of $g(a)$ and is continuous there, then $f \circ g$ is continuous at a.

Let

$$
g(x)=\frac{x+2}{x^{2}+1} \quad \text { and } \quad f(x)=|x| .
$$

We have seen in Questions 4i and 2 on that both g and f are continuous on all of \mathbb{R}. Hence by the Composite Rule for continuous functions we deduce that

$$
f(g(x))=\left|\frac{x+2}{x^{2}+1}\right|
$$

is continuous at every $a \in \mathbb{R}$, i.e. is continuous on \mathbb{R}.

